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Abstract

In many cases, including some popular board games like the classic RISK, people tend to follow
the same basic principles when it comes in formulating a winning strategy. It turns out that these
commonly shared principles of play can be predicted and evaluated by using well-defined
mathematical approaches that define the core of the so-called Game Theory. This short study
presents the basic principles of game-theoretic approaches in game-playing and applies a simple,
yet comprehensive, analysis of the dice-battle outcome in RISK.

Revision 3 of this paper contains useful elements on recent variations of the standard RISK game,
including the participation of “Hero” and “Fortress” attributes when calculating battle outcome in
specific locations and/or special units. It also contains an extension to the initial game-theoretic
model of battle analysis, based on a new probabilistic model that is introduced for calculating the
probabilities for each outcome in any single battle, using binomial distribution processes. With
such a model at hand, it is fairly easy to decide not only “how” but also “when” to go on battle,
given the specific forces opposition.

1. Introduction to Game Theory

The mathematical theory of games was first developed as an analytical model for situations of conflict.
It was widely adopted for theoretical studies of economics after mathematicians John Von Neumann
and economist Oskar Morgenstern published a book called "Theory of Games and Economic Behavior” in
the early 1940's. Since then, a wide variety of applications emerged, including co-operative players,
timing duels, differential equation modeling and games of imperfect information. In 1950,
mathematician John Nash formulated a solid proof for the existence of equilibriums in non-zero sum
games, the significance of which gave him a Nobel Prize in 1994 for his contribution in Economics,
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and a new boost in theoretical modeling for absurd problems like The Prisoner’s Dilemma and the
Cuban Missile Crisis between USSR and USA during October 1962. In fact, it turns out that most
competitive environments in real life, like setting a price for a product in a competitive market, are not
zero-sum situations since all adversaries compete for higher gain by not necessarily against each
other. Nash's theorem ensures that, sooner or later, the adversaries will be forced to settle down in an
equilibrium where they can benefit the most possible simultaneous gain for all of them, unless of
course they decide to cooperate and raise their common gain even more!

Fortunately, popular board games like RISK are far simpler and far less important than any of these
situations. Nevertheless, the desire to win and defeat the opponent is always there, hence the need to
formulate a winning sequence of moves and strategies towards this goal. Since in all typical board
games each adversary gains by the mere loss of the opponent, the situation is clearly defined by a
special subclass of theoretical models of game playing, which is called zero-sum. This essentially means
that the amount of "gain" a player receives is equal to the "loss" of the opponent. In cases where there
are more than one opponents, the single player simply has to play against all of them, which is called
strictly non-cooperative mode of game playing. If the single player is allowed to cooperate with one or
more other players, evidently formulating a coalition, playing against a group of other cooperating or
non-cooperating opponents, the original game is transformed into a non-cooperative game between
coalitions of players, instead of single players against each other. Of course the theoretical
implications of cooperation are far too complex to address by simply assigning each player to a
coalition, nor addressing the more general problem of modeling a conflicting situation with more than
two distinct opposing sides.

However, Game Theory has proven that all zero-sum games are accompanied by a globally optimal
strategy for both players, which is the ultimately best way to play for each side, regardless of the
movements of the other side. Since even chess is a zero-sum game, it follows that there is a globally
optimal way to play. Although the white side has the advantage of playing the first move, it can be
proved that this globally optimal strategy will probably lead to a non-loss situation due to the nature of
the Von Neuman formulation. Of course, the immense complexity of the game of chess has not yet
allowed us to exploit, or even verify by computer simulations, this extraordinary fact, as even the best
chess-playing computer programs still employ extensive simulation of human experience from chess
grandmasters and champions, instead of directly implementing some comprehensive game-theoretic
approach to the full. Explicit graph searching algorithms like the classic Minimax and A-B are capable
of modeling the game up to the next few hundreds of moves from either side of the players, while
modern computers can search through millions of moves per second - still, this is only a very limited
view of a complete game of 50-60 moves in chess, which is proportionally equal to a few trillions of
possible move combinations. Human chess players are still able to barely compete and win against the
best computer players, but it seems that in this particular class of games it is only a matter of time
until the computers become fast enough and equipped with so much memory that it would be simple
impossible to be forced into a situation worst than a stalemate or a draw. This simple observation is
evident in the far simpler game of Checkers, were an experienced player can never loose, or can even
win by exploiting mistakes made by the other player.

2. What about RISK?

The game of RISK constitutes of two or more players, opposing their forces on the global map with the
ultimate goal of conquering all of the continents. Many common variations include sub-goals and
special missions, were each player can win by accomplishing these tasks, even if the other players
survive or even occupy more territories at the time. Forces are supplemented and transferred
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according to specific attributes of the map and the rules of the game itself, while various players can
be allies or enemies at different phases of the game. Consequently, systematic mathematical modeling
of the game at the strategic (global tasks) and operational (force distribution) levels is quite difficult to
formulate. However, opposing forces battling over the ground of a specific region are handled by a
small set of combating rules, determined by a set of dices for each opposing side. Thus, the problem of
modeling battle outcomes in tactical level (combat) is much simpler and fit to formulate via game-
theoretic approaches.

Figure 1: The board of RISK is a game of global dominance!

Standard RISK rules for combat state that each battle round can include up to 3 attacking units and up
to 2 defending units, all engaged in combat until the outcome is determined by total elimination or
surrender by either side. Earlier versions of RISK prohibited any new unit reformation for either side
until one of the opponents was eliminated, or retreat and never attack the specific territory during the
same game turn. Now, standard game rules on battles are more flexible, treating dice-drawing as a
separate battle, thus each player can define the size of its force before each draw. This means that a
battle can now include numerous attacking and defending forces, each participating with up to 3
attacking and 2 defending units. The attacker can always choose to continue the battle with a new
draw or stop it entirely. The combat continues with the new forces, as they settle after the previous
round by the loss of one unit by either players, and the final winner of the complete battle is the player
that is left standing by one or more units on that spot. It should be noted that game rules forbid the
defender to introduce more opposing units than the attacker, which means that if the attacker uses 1
unit, then the defender must also use no more than 1 unit too. This rather explicit game rule is the root
of much of the asymmetry in modeling the dice battle, as it will be evident further on in this study.

Since each player starts with a fixed, not infinite, number of engaging units and cannot alter them
until the end of the battle, and since in each round of dice-drawing one of the players is sure to loose
one unit, the battle is sure to be completed in a limited number of rounds. Furthermore, since each
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player's gains and losses are directly linked to the losses and gains of the opponent, the related game
is said to be zero-sum. Only two players can engage in combat at a time, so the game contains only
two opposing sides, which is the simplest form of zero-sum games.

The number of "moves" available for each player determine the number of strategies that this player
can introduce into the game. Here, the number of units dictate the number of dices available to each
player, when drawing against the opposing force. The player cannot control the outcome of each dice,
hence nor the number that will be used to determine the player's support value on each round, but
since the highest number is always selected, it is expected that more dices mean higher chances to
draw a relatively high number. From this point of view, the attacker, which is granted by the choice of
using up to 3 dices, exhibits an advantage over the defender that can only use up to 2 dices. On the
other hand, equal draws work in favor of the defender, which means that the attacker has to draw a
strictly higher number in order to win.

In order to formulate a robust game-theoretic model for this situation, the possible battle
configurations, in terms of numbers of opposing units, has to be distinctively separated and studied as
a special case. This means that a simpler game has to be assigned for each combination of units, so that
each case can be analyzed and studied separately. For example, when each opponent introduces 1 unit
each the game becomes 1x1, when the attacker uses 2 units and the defender 1 unit the game becomes
2x1, etc. The complete list of all possible game configurations, the first number stating the attacker's
forces and the second number the defender's forces, can be constructed as follows:

1x1 I1x2
2x1 2x2
3x1 3x2

Table 1: RISK battle configurations

The 1x2 configuration, as stated before, is invalid according to the game rules, thus it should not be
accounted for. Furthermore, this fact invalidates the symmetry of the configurations table, making it a
special case of 5-cell structure, rather than a normal 3x2 matrix.

3. Battle simulation

For each game formulated above, it is possible to construct a set of enumerating combinatorial
equation, calculating exactly how much of all the dice-drawings will favor each player, evidently
describing the gain factor for each one of them. However, the fact of using the higher of the numbers
drawn by the dices available for each player when using more than a single dice, essentially sorting
out the drawn numbers and selecting the maximum, greatly complicates the problem in combinatorial
terms. A complete plan of dice draws and the effected selections have to be formulated for all possible
combinations, before someone can apply then into calculating the outcome of the battle. Hence, for
1dice (of 6 sides of course!) the possible combinations are 6, for 2 dices the possible combinations are
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6*6=36, for 3 dices the possible combinations are 6*6*6=216, and so on. Each of these cases have to
measured against the dice combinations of the other player, which means that for a full battle of 3
attacking units against 2 defending units, one has to construct a 216x36 matrix with all the possible
outcomes, determine the gain or loss for both players in each case and finally add all of them up to
determine which of the players has a higher overall chance of coming out a winner.

Instead of constructing such large matrices by hand and trying to figure out how they can be
formulated in a compact form by using combinatorial equations, a simple computer program can
simulate the drawing of the available dices in all possible situations, recording the outcomes in lists
and processing them later to determine the final outcome. Specifically, each of the 6 available battle
configurations is simulated by a nested loop of dice drawing, determining the results of all possible
combinations, sorting out the drawn numbers for each player and comparing their best available
support values in each case. Since each dice is considered statistically independent from all the other
dices, and since all 6 values of each dice are considered equally probable, no special care has to be
employed when implementing the related statistical distribution in the simulation loops. In
probabilistic terms, each player's strategy is determined by using N statistically independent
variables, each exhibiting uniform distribution. Every nested simulation loop essentially constructs
the outcome matrix for the related battle configuration, as described above. The 6 battle outcome
matrices constitute the result of the complete combined game.

4. The simulation program

The simple program, presented at the end of this report, is a Matlab source that implements all of the
six simulation loops described in detail in the previous section. After evaluating each battle outcome
matrix, essentially filling each cell with +1 for attacker's win or -1 for defender's win, it sums up the
final result for each battle configuration and determines the game value for each of them. Since all of
the statistical distributions for the dices are considered uniform, there is no special care about using
weighting factors when calculating the sum. Positive game value means that the attacker is favored
for a win in that specific battle configuration, whereas a negative value means the same for the
defender.

Using the game value for each combined battle outcomes, the complete game matrix can be
constructed in accordance to the number of units that each player introduces into the battle. The final
game matrix calculated by the simulation program is presented here:

DEF
1) (2)

app | @ 01667 |\

(2) +0,1574 |-0,1103
(3) +0,3194 +0,0395

Table 2: Standard game rules battle outcome matrix
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5. Battle analysis

Before commenting about the results obtained by the simulation, some notes have to be pointed out
first. Although the battle may contain multiple rounds of dice-drawing, it can be considered as a
single-stage game since no player can alter its forces before the battle is completed. A player can
always retreat from a battle, but this does not alter the nature or characteristics of the initial battle
configuration, it simply interrupts it in an intermediate stage. The total gains or losses for each player
can be limited this way, saving some of the units if they are stuck with disadvantageous odds and
they are about to loose from a stronger force, but the outcome of each specific battle configuration is
determined by the 3x2 matrix of outcomes (except for the invalid cell at: A=1, D=2), calculated by the
simulation.

Using the typical theorems and propositions of Game Theory for standard zero-sum games, the 3x2
game matrix calculated above dictates that the attacker exhibits the highest advantage when
introducing 3 units against 1 defending unit, as it was expected. The advantage towards the attacker
remains even when 3 units face 2 defending units or when 2 units face 1 defending unit. This typical
result simply proves that the bonus gained by the defender in cases of equal dice draws can only be
overcome by always using a larger number of attacking units, hence more dices than the defender. In
order to apply normal matrix operations like max and min functions over rows and columns,
invalidating the cell at (1,2) simply means that it does not participate in any similar calculation over a
set of cells. For example, since the first row now contains only one valid cell, the maximum and
minimum values of this row are equal, i.e. the cell at (1,1). Using this formulation, all further
procedures can be applied with no problem at all.

5.1 Optimal strategies for RISK battles

Speaking in strict terms of Game Theory, using the Minimax theorem for finite zero-sum games, the
attacker's best strategy is the one that dictates using 3 units (maximum value of minimums of rows),
securing at least +0,0395 gain, while the defender's best strategy is the one that dictates using 2 units
(minimum value of maximums of columns), limiting the expected damage at +0,0395 at most. The cell
at (3,2) is the saddle-point for this specific game and the +0,0395 is the game value for both players. Given
the fact that each player's choices are independent from the other player's strategy, the attacker should
always try to secure as much gain as it can, while the defender should always try to limit its damage
to the lowest possible level, in every possible situation. This means that the attacker is advised employ
the dominative strategy of using 3 attacking units in all cases, while the defender is advised employ the
dominative strategy of countering every attack with 2 defending units, whenever these forces are
available of course. The game value +0,0395 is the expected outcome of each completed battle game,
which means that the attacker has an overall advantage of almost +4% to win any battle when using
the best strategy of 3 units, and the defender can limit its disadvantage to -4% when using the best
opposing strategy of 2 units.

Since the complete battle game has a saddle-point, the optimal strategies for each player are pure, that is
they should always be followed. In fact, applying the rules of dominance over the strategies of rows
(attacker’s) and columns (defender’s), it is easy to end up with the same resulting saddle-point
without even applying the Minimax theorem. However, since the overall battle can be determined
through a series of intermediate dice-drawing rounds, each player can use the battle outcome matrix
to decide at any given round if it is best to continue the battle or retreat and preserve the remaining
units. From this point of view, the matrix dictates that an attacker with larger force than the defender
is always has always the advantage, while a defender with equal or larger force than the attacker's can
probably hold-off the attack. Furthermore, the matrix demonstrates that an attack with opposing
forces ratio of 2:2 is slightly more balanced than with forces of ratio of 1:1. Although experienced

xgeorgio@yahoo.com 6-28 2-Jan-2004



RISK board game — Battle outcome analysis

players of RISK should probably know these conclusions by fact, it is not easy to determine exactly
how "advantageous" or "disadvantageous" a specific situation is by pure empirical evaluation.

The following graph is a contour plot represents the winning positions for each player. The X-axis
contains the possible strategies for the defender (1...2) and the Y-axis contains the possible strategies
for the attacker (1...3). The attacker's winning positions are contained within the green area and the
defender's winning positions are contained within the white area. The polyline just below the blue
zone in the middle defines equilibrium states, were there the outcome of the battle is an exact
stalemate. The polyline just above the blue zone defines the plane at level +0,0395 exactly, which is the
exact game value. The attacker can hope to achieve more than this in case of lucky dice draws and/or
by exploiting limited defending forces, whereas the defender hopes exactly the opposite, however in
the long run it is expected that battles should end up around the second polyline, at the boundary
between the red and the blue areas of the graph.

RISK - hattle outcome evaluation

Attacker wins

Aftack (ratio)

14l Defender wins .

1 1 1 1 1 L L L L L

1 1.1 1.2 1.3 1.4 14 16 1.7 18 149 2
Defense (ratio)

Figure 2: Contour plot for standard RISK battle outcome

The contour plot is generated directly by using the battle outcome matrix, at the last portion of the
Matlab source code, using built-in plotting functions that calculate the intersections of the game
matrix plane with the flat planes at the given levels, namely the 0 and the game value. However, it is
not clear how the zero-level contour polyline, separating the green from the white area, maps directly
to the equilibrium curve of the game itself. The 6 matrix values define 6 contour reference points, by
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which the contour plane is automatically calculated and plotted, hence the automatic generation of the
zero-crossing curve. In order to examine this equivalence and calculate the exact points of reference
for the equilibrium polyline itself, first we must examine the battle outcome matrix. There are exactly
3 "transitions" in which the game value changes sign, that is crosses the equilibrium curve. These are
from (1,1) to (2,1), from (2,2) to (3,2) and from (2,1) to (2,2). These zero-crossings essentially define the
three points of the plot that define the polyline, by connecting the two intermediate line sections
between them.

5.2 Optimal forces opposition

As the game setup permit only distinct (integer) strategies for both players, i.e. fractional parts are of
no concern here, the equilibrium curve here is simply the boundary between winning and losing
positions for both players, with no real possibility for true stalemates in the battle. The asymmetry
between the attacker (choose more dices) and the defender (wins by default on equal draws) ensures
that in every battle there can be only one final winner.

It should be noted that, since the game value and in fact any of the game matrix cells, represents the
relative advantage or disadvantage in the related battle configuration, with the attacker favored by
positive values and the defender favored by the negative values, it is fairly easy to calculate the exact
winning probabilities for each side. A stalemate outcome yields equal a-priori winning probabilities of
50% for each side, whereas a bonus for one side means exactly the same negative effect for the other
side, due to the zero-sum nature of the game. As the exact value of this bonus should be exactly one-
half of the total difference between these two probabilities, for a game value of gv=+0,0395 the a-priori
winning probability for the attacker is: 50%+(gv/2) and for the defender is: 50%— (gv/2):

Guate = +0,0395 => Pa=50%+(Gvaiue/2)=51,975% | Pp=50%— (Gvalue/2)=48,025%

Using the a-priori probabilities as calculated above, battle stalemate setups can be derived by using a
weighted sum of “expected gain” for each side, and solving the equation for a result of zero:

Game value at saddle-point: Gualue
Attacker’s winning probability: Pa =50% + (Gvaiue/2)
Defender’s winning probability: Po = 50% — (Gvaue/2)

Attacker’s expected gain: Pa*Na

Defender’s expected gain: Pp*Nb

Cumulative outcome: CS =Pa*Na - Po*Nbp

On stalemate: CS=0 <=> Pa*Na-Po*Nb=0

Equilibrium forces ratio: Pa*Na - Pp*Np =0 <=> Pa*Na=Pp*Np <=>

<=> Re = NA/ND = PD/PA= (500/0 - (Gvalue/Z)) / (500/0 + (Gvalue/Z))

Model 1: Opposing forces equilibrium ratio estimation

It is now easy to see how each point of the equilibrium polyline actually maps to opposing forces with
specific a ratio, which asymptotically leads to a stalemate in battle. In this case, the game value Gualue
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and the Pa and Pp a-priori winning probabilities that were calculated before, yield an equilibrium ratio
of:

Re = Na/Nb = Po/Pa = (48,025% / 51,975%) = 0,924
The advantageous game value for the attacker has now translated into a slightly lower attacking force
size, in a completely “fair” battle. In order not to loose, the attacker should always ensure that it

introduces at least 92,4% as much units as the defender, whereas the defender should have at least
8,2% (=1/0,924) more units on the battle area in order to hold off the attack.

5.3 Simulating RISK battles

The zero-sum property of the game, as well as the individual probabilities of gain and loss (+2, +1, -1, -
2) are demonstrated in detail on the console output of the simulation program itself:

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating. ..
GAME 1x1 PROB: Att(+1)=41.667%(15/36) Def(-1)=58.333%(21/36)

GAME 2x1 PROB: Att(+1)=57.870%(125/216) Def(~1)=42.130%(91/216)
GAME 3x1 PROB: Att(+1)=65.972%(855/1296) Def(-1)=34.028%(441/1296)

GAME  2x2  PROB: Att(+2)=11.381%(295/2592) Att(+1)=38.619%(1001/2592) Def(-
1)=27.585%(715/2592) Def(-2)=22.415%(581/2592)
GAME  3x2  PROB: Att(+2)=18.583%(2890/15552) Att(+1)=31.417%(4886/15552) Def(-

1)=35.372%(5501/15552) Def(-2)=14.628%(2275/15552)
Game value table (rows=attack, cols=defense):
GV =
-0.1667 0
0.1574  -0.1103
0.3194 0.0395
(Att_Hero=0 , Def _Hero=0 , Def Fort=0)

>>

Output 1: Simulation program results for standard battle rules

From the first line of output, regarding the 1x1 battle configuration, the sum of all wins for the
attacker yields an overall winning probability exactly the same as the one calculated by the scheme
given previously. The game value of —0,1667 divided in half yields a -0,08335 negative bonus over the
initial 50% for the attacker, i.e. 41,665%, exactly the same as the value calculated by the simulation (the
difference in the last digit is due to rounding in the console output). For better precision, the true
value of the a-priori probability can be calculated directly from the number of winning positions
versus all dice combinations, which in this case is: 15/36 = 41,6666...%. The same observations can be
made for all the other battle configurations, observing the final probabilities for all possible outcomes.
It is interesting to see how these probabilities are distributed in the case of +2 and -2 battle outcomes.
In all cases, the weighted average of each outcome count, multiplied by the related positive or
negative gain (+2, +1, -1, -2), yields the game value for each case.
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6. Battle outcome prediction

The analysis of the battle produced useful hints about the optimal strategies and forces opposition for
both adversaries, according to the asymptotic behavior of the dice-drawing procedure. In Game Theory
this may be enough, however in practical situations where there is the need to know, or at least make
a good estimation, about the most probable outcome of a specific “stochastic experiment” like
drawing a few dices together, one final step has to be made to complete an analytical model for
automatic battle planning that can be used by both human and computer players.

Although the analysis of the game shows that the two players should eventually come into a saddle-
point, where they both use the maximum of their capabilities in terms of force size, and although it is
certain that in this case the outcome of these battles should slightly favor the attacker in the long run,
however it is not certain at all whether a specific battle will be won by the attacker or the defender.
This fact is of course the result of the stochastic parameter of dice-drawing, where the uncertainty in
knowing the drawn numbers introduces uncertainty in knowing the winner altogether. It is rather
uncomfortable for the attacker to follow precisely the optimal strategy calculated above, always
attacking with an advantageous forces ratio, and still loose some of the battles on the board.

To address this problem, a new element has to be introduced into the player’s planning method,
specifically a model for the randomness of the dices and the uncertainty they produce. Since the main
focus here are not the dices themselves, but rather the outcome of each battle round, the model should
address the resulting gain or loss in terms of opposing forces. There are only two possible outcomes
for the players in each round, “win” and “loose”, that yields +1 or -1 accordingly in the available units
in the next round. It is possible for a player to loose more than 1 unit in a battle round if the other
player is lucky, but since these situations have already been accounted for when calculating the final
game value, it is safe to use the a-priori winning probabilities as the base for a binomial distribution
model of “wins” and “losses” for each player. In fact, since the game is zero-sum, calculating the
attacker’s winning probability distribution automatically yields the defender’s model as well.

In order for the attacker to win in a specific battle with specific forces, it is necessary to exhibit at least
so many “wins” as the defender’s force size, essentially eliminating it. A valid winning position
demands at least one surviving unit for the winner, so the available (maximum) number of dice-
drawings can be determined directly by the size of the opposing forces, provided the fact that
according to the current game value calculation only -1 losses are accounted for.

Modeling the attacking and defending forces into a binomial distribution probability model, the
chances of a final win can be calculated analytically by a simple formula:

Attacker’s force size: Na

Attacker’s support probability: Pa

Defender’s force size: Nb

Defender’s support probability: Po

Maximum battle rounds: Z = Np+Na-1

Winning condition for Attacker: Prob{ wins(A) >=Nb } = 1 - Prob{ wins(A) <Nb }
Binomial distribution function: Prob{X} = P(x;P,N) = Comb(N,x) * Px* (1-P)N=

Model 2: Winning probabilities estimation
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"

This model strictly determines the probabilities related to the attacker’s “x” wins in a total of “N”
battle rounds. Substituting N with Z, P with Pa and x with Np and using the cumulative binomial
distribution formula for summing up all values up to (but not containing) ND wins, it is now possible
to calculate exactly the probability of the attacker’s force eliminating the defender’s force and still
keeping at least one unit alive at the end. The exact value of this probability depends solely on the
battle configuration, which in this case is assumed to be the optimal strategy for both players using the
maximum allowable force sizes in every round, the a-priori winning probabilities for the players (i.e.
the game value), and the exact size for each of the opposing force. The table below presents a standard
probabilities matrix for this situation, showing force sizes up to 15 units:

A\D 2 3 4 © 6 7 8 9 10 11 12 13 14 15
3 [ 71,65%| 53,70%| 38,15%| 26,02%]| 17,20%]| 11,09%| 7,00%| 4,35%| 2,66%| 1,61%| 0,96%| 0,57%| 0,34%| 0,20%
4 [83,62%| 69,25%| 54,31%| 40,73%]| 29,43%| 20,62%| 14,08%| 9,40%| 6,17%| 3,98%| 2,53%| 1,59%| 0,99%| 0,61%
5 [90,81%| 80,45%| 67,90%| 54,85%]| 42,64%| 32,07%| 23,43%| 16,69%| 11,64%| 7,96%| 5,35%| 3,54%| 2,32%| 1,49%
6 | 94,95%| 87,99%)]| 78,34%| 67,06%| 55,33%| 44,16%| 34,20%)]| 25,79%| 18,99%| 13,69%| 9,69%| 6,74%| 4,61%| 3,12%
7
8
9

97,27%| 92,81%)| 85,86%| 76,83%| 66,51%| 55,77%| 45,41%]| 35,99%| 27,83%| 21,04%| 15,59%| 11,34%| 8,11%| 5,71%
98,54%| 95,79%| 91,02%| 84,21%]| 75,71%| 66,13%]| 56,18%| 46,49%| 37,53%]| 29,61%| 22,88%| 17,33%| 12,90%| 9,45%
99,23%| 97,58%| 94,43%| 89,52%]| 82,89%)| 74,84%)| 65,88%| 56,57%| 47,42%| 38,87%| 31,19%| 24,53%| 18,95%| 14,39%
10 | 99,60%| 98,63%| 96,61%| 93,20%]| 88,25%]| 81,81%| 74,16%| 65,71%| 56,93%| 48,25%]| 40,06%]| 32,60%| 26,05%| 20,45%
11 | 99,79%]| 99,23%]| 97,97%| 95,68%| 92,11%| 87,16%]| 80,92%| 73,61%| 65,60%| 57,27%]| 49,00%| 41,13%| 33,88%| 27,43%
12 | 99,89%| 99,57%| 98,80%| 97,31%]| 94,81%]| 91,14%]| 86,23%| 80,17%| 73,17%| 65,54%| 57,60%]| 49,69%| 42,10%| 35,05%
13 | 99,94%| 99,77%| 99,30%| 98,34%]| 96,65%]| 94,00%]| 90,27%| 85,42%| 79,54%| 72,81%]| 65,51%]| 57,91%] 50,32%| 42,99%
14 | 99,97%| 99,87%| 99,60%| 99,00%]| 97,87%]| 96,01%]| 93,25%| 89,49%| 84,71%| 79,00%| 72,52%]| 65,50%| 58,21%| 50,90%
15 | 99,99%| 99,93%| 99,77%| 99,40%]| 98,66%]| 97,39%)] 95,40%| 92,56%| 88,79%| 84,09%]| 78,53%)]| 72,27%| 65,52%| 58,50%

Table 3: Standard game rules winning probabilities matrix

Given a matrix like the ones presented above, it is fairly easy for a non-expert player to exhibit optimal
battle behavior, making sure that enough forces are allocated into an attack or ensuring a hard
opposition in the defense. Models like these can also be used for a snapshot estimation of a player’s
status, essentially calculating how dangerous an attack can be or how probable is for the opponent to
attack a specific region. For every board game like RISK, where the conquer and control of areas in a
“map” are a matter of outmost importance for winning the overall game, solving the game at the
tactical (lower) levels effectively transforms the task of strategic planning into a logistics problem for
optimal forces allocation.
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Equilibrium plane (battle)
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Figure 3: Standard game rules winning probabilities 3D plot

7. Heroes and Fortresses

In some recent variations of the standard RISK game, some new and interesting properties have been
introduced into the battles for conquering new areas on the map. Special characters, the “hero” pawns
can accompany an attacking or defending force, effectively yielding a special bonus during the dice-
drawing phase of the battles. Same this applies for a “fortress” in the area that is to be defended,

yielding an added bonus for the defending force.

The “hero” pawn moves and behaves as any other unit of the player, with some added tasks of
completing independent sub-missions and claim the accompanied rewards, which however are now
directly related with the outcome of an ongoing battle after all. It does not constitute a fighting unit by
itself, but if a “hero” is used along with a fighting force of normal units, it adds a bonus +1 to the
highest (only) number drawn by the dices used in a round of battle. Thus, if an attacker draws three
dices from which the highest number is 5, then this number is calculated as if it were a 6. This bonus
applied even if the highest number is already 6, yielding a 7. It the main force wins, the “hero” pawn
moves along with it for the current game turn, whereas if it looses, the “hero” unit looses also and it is

temporarily removed from the game board.

The “fortress” property applies only for the defender, even if the attacking force has also a “fort” in
the area from which it launches the attack, obviously because a static fort cannot be used directly for
attacking a neighboring area. The defender, if a “fort” is available in the defending area, adds a bonus
of +1 to the highest drawn dice number, even if a similar bonus is already available through a “hero”
pawn. This effectively means that a strong defense that exhibits the bonuses from a “fort” and a
“hero” in the area can add +2 to the highest drawn dice number, making the battle very hard for the

attacker to win unless a strong force is allocated to it.
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These two slight variations of the standard battle rules may seem trivial, but in effect they produce
serious deviations from the properties and tactical characteristics of the standard battle, as it will be
proved in the following sections.

7.1 Attacking with a “hero”, defending with standard force
Using the models and formulations already presented in detail for the standard battle rules, it is fairly

easy to implement these new rules into the battle outcome estimators of the simulation program, run
the new simulation and observe the results.

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating. ..

GAME 1x1 PROB: Att(+1)=58.333%(21/36) Def(-1)=41.667%(15/36)

GAME 2x1 PROB: Att(+1)=74.537%(161/216) Def(-1)=25.463%(55/216)

GAME 3x1 PROB: Att(+1)=82.639%(1071/1296) Def(-1)=17.361%(225/1296)

GAME 2x2 PROB: Att(+2)=15.625%(405/2592) Att(+1)=34.375%(891/2592) Def(-
1)=34.375%(891/2592) Def(-2)=15.625%(405/2592)

GAME 3x2 PROB: ATtEL(+2)=25.527%(3970/15552) ATt(+1)=24.473%(3806/15552) Def(-
1)=40.811%(6347/15552) Def(-2)= 9.189%(1429/15552)

Game value table (rows=attack, cols=defense):
GV =

0.1667 0

0.4907 0

0.6528 0.1634
(Att_Hero=1 , Def _Hero=0 , Def Fort=0)

>>

Output 2: Simulation program results for added bonus battle rules (ATT=+1 / DEF=0)

Since no other change has been made in the standard battle rules, there are still up to 3 dices available
for the attacker and up to 2 dices available for the defender, thus the basic game configurations are
still the same. The difference here is that, due to the presence of the “hero” pawn for the attacker, a
bonus +1 is added to the highest dice number drawn in every round of the battle.

DEEF (0)
(1) ()

ATT | @ [+0,1667 N\

G1) @) +0,4907 | 0,0000
(3) +0,6528 |+0,1634

Table 4: Added bonus game rules battle outcome matrix (ATT=+1 / DEF=0)
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Using the same game-theoretic analysis for the game matrix produced by the simulation program, it is
fairly easy to try and locate a saddle-point, if it exists. In fact, this saddle-point could be in the cell at
(3,2), as it were for the standard battle rules, if only there wasn’t that little difference of +0,0033
towards the cell at (1,1). If the Minimax theorem is used for the attacker, a preferred strategy of 1 unit
force emerges at cell (1,1), whereas if it is used for the defender a force of 2 units is proved to be the
best choice. Strictly speaking, in this case the game-theoretic models become complex and involve
minimization of linear equations in order to produce a mixed strategy for each player, one that defines
the optimal ratio of mixing some or all of the available strategies and using them in turns, using a
random device that employs the same outcome distribution (like a “weighted” dice) to choose exactly
which one to use in each round of the battle. This situation is rather uncomfortable when using
normal dices and simple gameplay, however optimal strategy in this case should involve mixing a few
of the available pure strategies at hand, thus producing a stochastic way for both players of deciding
the exact force sizes that are to be used in the battle.

Fortunately, the battle rules state specifically that the attacker has the initiative of deciding first the
size of the attacking force, before the defender does the same for the defending force. Furthermore, the
defending force is sure to be of equal or less in size than the attacking force. These two restrictions are
enough to clear out any ambiguities on describing the preferred strategies for the two players. Since
the attacker has the initiative of stating first the size of its force, the obvious choice is to use only 1
attacking unit that exploits the +1 bonus in dice-drawing due to the presence of the “hero” pawn. This
choice effectively restricts the defender of using only 1 unit also, but not having the advantage of the
+1 bonus as the attacker has. This situation is the emerging saddle-point, produced by the specific
game rule restrictions and not by the game-theoretic properties of the game matrix. In any case, the
attacker can successfully lead the game into a situation where a positive game value can be reached
and hence secure an advantageous position in the upcoming battle. Its is interesting to observe from
the output of the simulation program how the 1:1 confrontation is slightly more promising for the
attacker in relation with the 3:2 confrontation, even though in the second one the attacker has more
than 25% chance of gaining a +2 result from a every battle round. It is also interesting to see how the
“hero” bonus yields to an exactly “fair” battle in case of 2:2 confrontations.

As before, it is fairly easy to use the emerged game value to calculate the a-priori winning
probabilities for both the attacker and the defender, as well as the equilibrium forces ratio:

Gualue = +O,1667 => PA=50%+(Gvalue/2)=58,335% / PD=50%— (Gvalue/2)=4:1,665%
Re =Na/Nb = Ppo/Pa = (41,665% / 58,335%) = 0,7142
Even if the change in the standard battle rules effect only in a +1 dice bonus for the attacker due to the
“hero” pawn, the advantage is a very strong one since it allows launching successful attacks even with
less than 72% available units in relation to the defending force. The presence of a “hero” pawn is

proved to secure almost 21% less units for the attacker, in contrast to the standard battle situation.

The following matrix demonstrates the differences on the probable battle outcomes, in contrast to the
same matrix calculated over the standard battle rules:
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A\D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

58,34%

34,03%

19,85%

11,58%

6,76%

3,94%

2,30%

1,34%

0,78%

0,46%

0,27%

0,16%

0,09%

0,05%

0,03%

82,64%

62,39%

44,66%

30,88%

20,83%

13,79%

9,00%

5,81%

3,72%

2,36%

1,49%

0,93%

0,58%

0,36%

0,22%

92,77%

80,11%

65,34%

50,98%

38,42%

28,16%

20,18%

14,19%

9,83%

6,71%

4,54%

3,03%)

2,01%

1,32%

0,87%

96,99%

89,95%

79,70%

67,73%

55,52%

44,12%

34,14%

25,83%

19,16%

13,98%

10,04%)

7,12%

4,99%

3,46%

2,38%

98,74%

95,08%

88,67%

79,95%

69,77%

59,08%

48,69%

39,17%

30,83%

23,81%

18,07%

13,51%

9,96%

7,26%

5,22%

99,48%

97,65%

93,91%

88,09%

80,46%

71,55%

62,03%

52,50%

43,47%

35,28%

28,11%

22,03%

17,00%,

12,94%

9,73%

99,78%

98,89%

96,82%

93,18%

87,88%

81,08%

73,14%

64,54%

55,76%

47,23%

39,26%

32,08%

25,80%

20,44%

15,98%

99,91%

99,49%

98,37%

96,21%

92,74%

87,88%

81,74%

74,57%

66,74%

58,61%

50,55%

42,85%

35,75%

29,37%

23,79%

© |00 [N o 0| W N (P

99,96%

99,76%

99,18%

97,94%

95,78%

92,49%

88,01%

82,41%

75,88%

68,68%

61,13%

53,51%

46,11%

39,14%

32,74%

[uny
o

99,98%

99,89%

99,60%

98,91%

97,60%

95,47%

92,36%

88,22%

83,08%

77,08%

70,43%

63,38%

56,19%

49,08%

42,28%

-
[N

99,99%

99,95%

99,80%

99,43%

98,67%

97,34%

95,26%

92,33%

88,47%

83,73%

78,19%

72,02%

65,42%

58,62%

51,81%

-
N

100,00%

99,98%

99,91%

99,71%

99,28%

98,47%

97,13%

95,13%

92,36%

88,76%

84,36%

79,22%

73,47%

67,28%

60,83%

-
w

100,00%

99,99%

99,95%

99,85%

99,61%

99,13%

98,30%

96,98%

95,05%

92,43%

89,07%

84,96%

80,17%

74,80%

68,98%

-
N

100,00%

100,00%)

99,98%

99,93%

99,79%

99,52%

99,01%

98,17%

96,87%

95,02%

92,54%

89,38%

85,55%

81,07%

76,03%

[ay
a1

100,00%

100,00%

99,99%

99,96%

99,89%

99,74%

99,44%

98,91%

98,06%

96,79%

95,02%

92,67%

89,70%

86,11%

81,91%

Table 5: Added bonus game rules winning probabilities matrix (ATT=+1 / DEF=0)
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Figure 4: Added bonus game rules winning probabilities 3D plot (ATT=+1 / DEF=0)
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7.2 Attacking with a “hero”, defending with a “hero” OR a “fortress”

As explained before, the presence of a “hero” pawn gives the player a +1 bonus during the dice-
drawing phase of the battle. The same thing applies for the “fortress” bonus, hence means the study of
these two situations as individual (not combined) configurations can be treated as one and the same.
On the other hand, two forces that each one exhibits a +1 dice bonus can be treated as a standard-rules
battle situation, as it can be observed by the output of the simulation program:

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating...

GAME 1x1 PROB: Att(+1)=41.667%(15/36) Def(-1)=58.333%(21/36)

GAME 2x1 PROB: Att(+1)=57.870%(125/216) Def(-1)=42.130%(91/216)

GAME 3x1 PROB: Att(+1)=65.972%(855/1296) Def(-1)=34.028%(441/1296)

GAME 2x2 PROB: Att(+2)=11.381%(295/2592) Att(+1)=38.619%(1001/2592) Def(-
1)=27.585%(715/2592) Def(-2)=22.415%(581/2592)

GAME 3x2 PROB: Att(+2)=18.583%(2890/15552) Att(+1)=31.417%(4886/15552) Def(-
1)=35.372%(5501/15552) Def(-2)=14.628%(2275/15552)

Game value table (rows=attack, cols=defense):
GV =

-0.1667 0

0.1574 -0.1103

0.3194 0.0395
(Att_Hero=1 , Def Hero=1 , Def Fort=0)

>>

Output 3: Simulation program results for added bonus battle rules (ATT=+1 / DEF=+1)

It is interesting to see how an attacker’s bonus is countered by an equal defender’s bonus, with no
chance whatsoever to the game itself. Since these bonuses are applied in exactly the same manner in
the same situations during the dice-drawing process, the outcome is exactly the same. This fact
coincides with the game-theoretic properties of the battle outcome matrix, where the adding of a
constant value in exactly the same count of positive and negative battle outcomes has no effect to the
final result.

DEF (+1)
) (2

ATT | (1) -0,1667 N\

¢ [(2) |+0,1574 +0,1103
(@) +0,3194 |+0,0395

Table 6: Added bonus game rules battle outcome matrix (ATT=+1 / DEF=+1)
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7.3 Attacking with a “hero”, defending with a “hero” AND a “fortress”

In this situation, the defender exhibits the added bonus of a “hero” and a “fortress” together (+2),
versus only a “hero” bonus (+1) for the attacker. Using the models and formulations already presented
in detail for the standard battle rules, the simulation program calculates the new battle outcomes.

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating. ..

GAME 1x1 PROB: Att(+1)=27.778%(10/36) Def(-1)=72.222%(26/36)
GAME 2x1 PROB: Att(+1)=41.667%(90/216) Def(-1)=58.333%(126/216)

GAME 3x1 PROB: Att(+1)=49.383%(640/1296) Def(-1)=50.617%(656/1296)

GAME 2x2 PROB: Att(+2)= 7.330%(190/2592) Att(+1)=42.670%(1106/2592) Def(-
1)=23.341%(605/2592) Def(-2)=26.659%(691/2592)

GAME 3x2 PROB: Att(+2)=11.960%(1860/15552) ATt(+1)=38.040%(5916/15552) Def(-
1)=32.382%(5036/15552) Def(-2)=17.618%(2740/15552)

Game value table (rows=attack, cols=defense):
GV =

-0.4444 0

-0.1667 -0.1933

-0.0123 -0.0566
(Att_Hero=1 , Def Hero=1 , Def Fort=1)

>>

Output 4: Simulation program results for added bonus battle rules (ATT=+1 / DEF=+2)

It is interesting to see that a greater dice bonus for the defender produces a negative-valued game
matrix, as it was the case with the positive-valued game matrix for the attacker when only an
attacking “hero” pawn was present.

DEF (+1)
) (2

ATT | (1) -0,4444 N\

© @ -01667 -0,1933
(3) -0,0123 -0,0566

Table 7: Added bonus game rules battle outcome matrix (ATT=+1 / DEF=+2)

Using the same game-theoretic analysis for the game matrix produced by the simulation program, it is
fairly easy to locate a saddle-point at the cell (3,2), yielding a game value of -0,0566. It is evident that
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the current situation is exactly the same as the standard-rule battles, only now the defender has the

advantage.

As before, it is fairly easy to use the game value to calculate the a-priori winning probabilities for both

the attacker and the defender, as well as the equilibrium forces ratio:

Gualwe = —0,0566 => Pa=50%+(Gvawe/2)=47,170% [ Ppo=50%— (Gvalue/2)=52,830%

Re = Na/Nb = Pp/Pa = (52,830% / 47,170%) = 1,12

In contrast to the case of a single +1 dice bonus for the attacker, here the added bonus for the defender
yields a higher size for the attacking force in relation to the defending force, in order to win the battle.
The attacker is now in a disadvantageous situation, because the “hero” bonus is overrun by the double
bonus for the defender’s side.

The following matrix demonstrates the differences on the probable battle outcomes, in contrast to the

same matrix calculated over the standard battle rules:

A\D 2

3

4

5

6

7

8

9

10

11

12

13

14

15

64,39%

44,71%

29,23%

18,28%

11,05%

6,50%

3,74%

2,12%

1,18%

0,65%

0,35%)

0,19%

0,10%)

0,05%

77,51%

60,18%

43,83%

30,33%

20,14%

12,94%

8,08%)

4,93%

2,95%

1,73%

1,00%

0,57%

0,32%

0,18%

86,18%

72,44%

57,33%

43,07%

30,96%

21,44%

14,38%

9,39%

5,99%

3,74%

2,29%

1,39%

0,83%)

0,49%

81,51%

68,74%

55,17%

42,38%

31,32%

22,37%

15,51%

10,48%

6,92%

4,48%

2,84%

1,78%

1,09%

95,06%

87,90%

77,78%

65,84%

53,44%

41,75%

31,51%

23,06%

16,41%

11,40%

7,74%

5,15%

3,37%

2,17%

97,10%

92,24%

84,60%

74,69%

63,46%

51,99%

41,17%

31,60%

23,58%

17,14%

12,18%

8,47%

577%

3,87%

3
4
5
6 |91,67%
7
8
9

98,32%

95,11%

89,56%

81,70%

72,07%

61,46%

50,74%

40,63%

31,62%

23,97%

17,74%

12,84%

9,11%

6,34%

10 | 99,03%)

96,96%

93,05%

87,05%

79,14%

69,80%

59,73%

49,64%

40,12%

31,59%

24,27%

18,23%

13,41%

9,68%

11 | 99,45%)

98,13%

95,45%

91,01%

84,74%

76,85%

67,80%

58,21%

48,65%

39,64%

31,52%

24,50%

18,64%

13,91%

12 | 99,69%

98,86%

97,06%

93,86%

89,04%

82,60%

74,78%

66,03%

56,85%

47,76%

39,18%

31,43%

24,67%

18,98%

13 | 99,82%

99,32%

98,12%

95,87%

92,27%

87,16%

80,62%

72,91%

64,43%

55,62%

46,93%

38,74%

31,31%

24,80%

14 | 99,90%)

99,59%

98,82%

97,26%

94,62%

90,68%

85,37%

78,79%

71,20%

62,97%

54,50%

46,17%

38,32%

31,18%

15 ] 99,94%)

99,76%

99,26%

98,20%

96,31%

93,34%

89,13%

83,66%

77,08%

69,62%

61,63%

53,47%

45,46%

37,92%

Table 8: Added bonus game rules winning probabilities matrix (ATT=+1 / DEF=+2)
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Equilibrium plane (battle)
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Figure 5: Added bonus game rules winning probabilities 3D plot (ATT=+1 / DEF=+2)

7.4 Attacking with a standard force, defending with a “hero” OR a “fortress”

In this situation, the defender exhibits the +1 bonus that may come from a “hero” or a “fortress”,
versus no bonus for the attacker. Using the models and formulations already presented in detail for
the standard battle rules, the simulation program calculates the new battle outcomes.

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating. ..

GAME 1x1 PROB: Att(+1)=27.778%(10/36) Def(-1)=72.222%(26/36)

GAME 2x1 PROB: Att(+1)=41.667%(90/216) Def(-1)=58.333%(126/216)

GAME 3x1 PROB: Att(+1)=49.383%(640/1296) Def(-1)=50.617%(656/1296)

GAME 2x2 PROB: Att(+2)= 7.330%(190/2592) Att(+1)=42_670%(1106/2592) Def(-
1)=23.341%(605/2592) Def(-2)=26.659%(691/2592)

GAME 3x2 PROB: Att(+2)=11.960%(1860/15552) Att(+1)=38.040%(5916/15552) Def(-
1)=32.382%(5036/15552) Def(-2)=17.618%(2740/15552)

Game value table (rows=attack, cols=defense):
GV =

-0.4444 0

-0.1667 -0.1933

-0.0123 -0.0566
(Att_Hero=0 , Def Hero=1 , Def Fort=0)

>>

Output 5: Simulation program results for added bonus battle rules (ATT=0 / DEF=+1)
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As with the situation of countering equal bonuses, it is evident that exactly the same game matrix is
produced when using bonuses of 0 for the attacker and +1 for the defender, or +1 for the attacker and
+2 for the defender. Consequently, the same saddle-point and game value stand here as well.

DEF (+1)
(6)) )
ATT | (1) -0,4444 N\
© @ -01667 -0,1933
(3) -0,0123 |-0,0566

Table 9: Added bonus game rules battle outcome matrix (ATT=0 / DEF=+1)

7.5 Attacking with a standard force, defending with a “hero” AND a “fortress”

Obviously, this last configuration is most disadvantageous for the attacker. The defender exhibits the
added bonus of a “hero” and a “fortress” together (+2), versus no bonus for the attacker. Using the
models and formulations already presented in detail for the standard battle rules, the simulation
program calculates the new battle outcomes.

>> risk3
RISK board game - evaluation of outcomes, version 1.2
Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com

calculating. ..

GAME 1x1 PROB: Att(+1)=16.667%(6/36) Def(-1)=83.333%(30/36)

GAME 2x1 PROB: Att(+1)=26.852%(58/216) Def(-1)=73.148%(158/216)

GAME 3x1 PROB: Att(+1)=33.333%(432/1296) Def(-1)=66.667%(864/1296)

GAME 2x2 PROB: Att(+2)= 3.935%(102/2592) Att(+1)=46_065%(1194/2592) Def(-
1)=21.026%(545/2592) Def(-2)=28.974%(751/2592)

GAME 3x2 PROB: Att(+2)= 6.417%(998/15552) Att(+1)=43.583%(6778/15552) Def(-
1)=31.031%(4826/15552) Def(-2)=18.969%(2950/15552)

Game value table (rows=attack, cols=defense):
GV =

-0.6667 0

-0.4630 -0.2504

-0.3333 -0.1255
(Att_Hero=0 , Def Hero=1 , Def Fort=1)

>>

Output 6: Simulation program results for added bonus battle rules (ATT=0 / DEF=+2)

It is interesting to see how this double bonus for the defender makes the attack much more difficult
for the attacking force, in relation to all the other configurations. An attack of ratio 1:1 has less than
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17% chance of a winning outcome for the attacker, while even a 3:1 attacking configuration is, again,
most likely to fail.

DEF (+2)
1) 2)

(
ATT | (1) -0,6667 N\

©) | (2 -0,4630 -0,2504
(3) -0,3333 -0,1255

Table 10: Added bonus game rules battle outcome matrix (ATT=0 / DEF=+2)

Using the same game-theoretic analysis for the game matrix produced by the simulation program, it is
fairly easy to locate a saddle-point at the cell (3,1), yielding a game value of -0,3333. Here, the game
matrix is somewhat different from all the previous situations, due to the high bias towards the
defender. Even though the attacker chooses to use the maximum allowable force size, the defender
chooses to use only 1 unit instead, securing the added dice bonus of +2 for it and limiting any loss due
to unfortunate dice drawing to only a single unit. This is a rather interesting result, since a human
player might be tempted to employ more than 1 unit in order to finish off the battle more quickly,
however in the long run this choice would probably result in heavier casualties.

As before, it is fairly easy to use the game value to calculate the a-priori winning probabilities for both
the attacker and the defender, as well as the equilibrium forces ratio:

Gualue = —0,3333 => PA=50%+(Gvalue/2)=33,333% / PD=50%— (Gvalue/2)=66,667%
Re = Na/Nb = Po/Pa = (66,667% / 33,333%) = 2,0
The resulting equilibrium forces ratio shows that, although a single +1 bonus for the defender yielded
a +12% force size required by the attacker, here the +2 bonus for the defender essentially doubles the
defending force capability in terms of battle strength. If an attacker is to overrun such a defending

force, an attacking force of at least double this size has to be used in the battle.

The following matrix demonstrates the differences on the probable battle outcomes, in contrast to the
same matrix calculated over the standard battle rules:

xgeorgio@yahoo.com 21-28 2-Jan-2004



RISK board game — Battle outcome analysis

A\D 1

2

3

4

5

6

7

8

9

10

11

12

13 14 15

70,37%

40,74%

20,99%

10,01%

4,53%

1,97%

0,83%

0,34%

0,14%

0,05%

0,02%

0,01%

0,00%| 0,00%| 0,00%

80,25%

53,91%

31,96%

17,33%

8,79%

4,24%

1,97%

0,88%

0,39%

0,16%

0,07%

0,03%

0,01%| 0,00%| 0,00%

86,83%

64,88%

42,94%

25,86%

14,48%

7,66%

3,86%

1,88%

0,88%

0,40%

0,18%

0,08%

0,03%| 0,01%| 0,01%

73,66%

53,18%

34,97%

21,31%

12,21%

6,64%

3,47%

1,74%

0,85%

0,40%

0,19%

0,09%| 0,04%| 0,02%

94,15%

80,49%

62,28%

44,07%

28,90%

17,77%

10,35%

5,76%

3,08%

1,59%

0,80%

0,39%

0,19%| 0,09%| 0,04%

96,10%

85,69%

70,09%

52,74%

36,85%

24,13%

14,95%

8,82%

5,00%

2,73%

1,44%

0,74%

0,37%]| 0,18%| 0,09%

3
4
)
6 191,22%
7
8
9

97,40%

89,60%

76,59%

60,69%

44,80%

31,02%

20,30%

12,65%

7,55%

4,33%

2,41%

1,30%

0,68%]| 0,35%| 0,17%

10 [98,27%

92,49%

81,89%

67,76%

52,45%

38,16%

26,26%

17,19%

10,76%

6,48%

3,76%

2,12%

1,16%| 0,62%| 0,32%

11 |98,84%

94,60%

86,13%

73,88%

59,59%

45,31%

32,61%

22,33%

14,62%

9,19%

5,57%

3,27%

1,86%]| 1,03%| 0,56%

12 [99,23%

96,15%

89,47%

79,08%

66,09%

52,23%

39,15%

27,93%

19,05%

12,48%

7,87%

4,80%

2,84%| 1,64%| 0,92%

13 [99,49%

97,26%

92,06%

83,41%

71,86%

58,78%

45,69%

33,85%

23,99%

16,31%

10,69%

6,77%

4,15%)| 2,48%| 1,44%

14 199,66%

98,06%

94,06%

86,96%

76,89%

64,81%

52,07%

39,92%

29,30%

20,64%

14,01%

9,18%)

5,83%| 3,59%| 2,16%

15 199,77%

98,63%

95,58%

89,83%

81,21%

70,28%

58,14%

45,99%

34,86%

25,38%

17,80%

12,05%

7,90%| 5,03%| 3,11%

Table 11: Added bonus game rules winning probabilities matrix (ATT=0 / DEF=+2)

Final Win Probability

Equilibrium plane (battle)

vm\!«\vmmm

\‘l\\\\\\\\\'&\‘&\‘k\‘k\‘l\‘l\‘

A

@ 90,00%-100,00%
M 80,00%-90,00%
0070,00%-80,00%
B 60,00%-70,00%
050,00%-60,00%
W 40,00%-50,00%
0030,00%-40,00%
020,00%-30,00%
@ 10,00%-20,00%
00,00%-10,00%

Figure 6: Added bonus game rules winning probabilities 3D plot (ATT=0 / DEF=+2)
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8. Playing optimally

The numerous tables and graphs presented above are only a detailed scheme for optimal strategies in
various battle rules and situations. However, since it’s not very easy, at least for human players, to
carry a set of probability tables for every case, nor it is fun, as it is supposed to be when playing board
games like RISK, a few summarizing notes can be used as guidelines for playing as an expert:

> For standard battle rules (0/0) or when equal “hero” and “fortress” bonuses (+1/+1)
apply, the attacker should use at least as much units as the defending force size.

» When a “hero” bonus is available for the attacker and no bonuses are available for
the defender (+1/0), the attacker can use 72% or more of the defender’s force size.

» When the defender exhibits a +1 difference in bonuses towards the attacker, i.e. when
the attacker has no “hero” pawn versus one defender’s bonus (0/+1) or has a “hero”
pawn versus two defender’s bonuses (+1/+2), at least 12% larger force should be used
during the attack.

> Finally, when the defender has both a “hero” and a “fort” in the area, the attacker, in
case of an attack, should use at least double the size of the defending force.

The following table can quantitatively describe these simple guidelines:

Battle Attacker’s | Attacker’s | Defender’s | Defender’s | Game Attacker | Defender | Equilibrium
Config. Force Bonus Force Bonus Value Win Win Forces
Prob(%) | Prob(%) | Ratio (A/D)
1:(0/0) |3 0 2 0 +0,0395 | 51,975% | 48,025% | 0,924
2:(+1/ 0) | 1 +1 1 0 +0,1667 | 58,335% | 41,665% | 0,7142
3:(+1/41) | 3 +1 2 +1 +0,0395 | 51,975% | 48,025% | 0,924
4: (+1/+2) | 3 +1 2 +2 —0,0566 | 47,170% | 52,830% | 1,12
5:(0/+1) | 3 0 2 +1 —0,0566 | 47,170% | 52,830% 1,12
6:(0/+2) |3 0 1 +2 -0,3333 | 33,333% | 66,666% | 2,0

Table 12: Summary of the obtained results on optimal RISK battle strategies

As already stated previously, for every board game like RISK, where the conquer and control of areas
in a “map” are a matter of outmost importance for winning the overall game, solving the game at the
tactical (lower) levels effectively transforms the task of strategic planning into a logistics problem for
optimal forces allocation. When a player knows how to safely secure an area towards any upcoming
attack or launch an attack with the most promising chances of success, the optimal allocation of forces
in the overall region can ensure a very strong strategic stance in any game setup. Game-theoretic
models of estimating optimal strategies, extended with analytical probabilistic models of outcome
estimation, can form a solid base for any higher-level automatic A.I. planning like a robust graphsearch
algorithm (Minimax, A-B, etc).
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9. Conclusion

Game Theory is a useful theoretical mathematic tool when dealing with robust models of nearly every
type of situations of conflicting interests, whether it is a simple board game like RISK, scheduling the
routes of public transportation networks or optimizing a satellite's trajectory versus fuel consumption.
A framework of mathematical theory that started nearly 60 years ago, quite recent it terms of the
complete history of Mathematics, has become a controversial tool in times of war, cold war and peace.
It is no coincidence that the famous RAND corporation, an unidentified (at that time) yet viable part of
the Advanced Research Projects Agency of the Department of Defense of the USA during the Cold
War, has extensively used advanced game-theoretic modeling and simulation to optimize the
defensive and offensive nuclear grid of the USA, including some rather extreme and somewhat
peculiar studies that pointed the way towards transferring the hypothesized intercontinental conflict
into space. Today, RAND Corporation is a commercial company, offering its sophisticated services in
logistics, planning and defense studies in various research areas. Fortunately, the only studies that
have been extensively tested over the last few years are mostly related with Economics and Logistics.

10. Final notes

This report is an extensive version of an earlier packet of notes, produced over a brief discussion over
the Usenet during May 2002. A related message, including the Matlab source code for the RISK battle
outcome simulation, were first posted at comp.ai.games on 14th May 2002 under the alias
xgeorgio@ieee.org. Since then I received numerous messages requiring further explanations about the
Matlab source code and the produced results. As the program itself is nothing more than a dice-
drawing enumerator, I decided it was better to explain the overall simulation methodology instead,
presenting a practical example of applied game-theoretic modeling and giving a brief glimpse of the
underlying theory behind it. The source code itself is quite generic and can be executed nearly in
every version of Matlab, however it has been tested only on versions 4.x and newer.
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RISK board game — Battle outcome analysis

PROJECT: -
PACKAGE: -
FILE: "risk3.m"
PURPOSE : RISK board game - cost analysis & evaluation
VERSION: 1.2
PLATFORM: MathWorks MATLAB (versions 4.x and later)
STAGE: RELEASE
UPDATED: 02-Jan-2004/15:00
HISTORY:
version 1.2: second release version completed
version 1.1: added "Hero" and "Fortress' bonus options
version 1.0: corrected cummulative game value calculation
version 0.9: First release version (beta) completed
version 0.7: added contour plot when finished
version 0.5: core completed, results verified
DESCRIPTION:

This program calculates all possible outcomes in standard
RISK game and evaluates the gain/cost for each player.
Attack player is positive-valued while defense player is
negative-valued. The outcome table can be used to construct
optimal forces confrontations (attack:defense ratio).

For standard game rules (i.e. no "Hero" or "Fortress" bonuses),
results table shows that attacker has a preferred strategy
at N=3 (max) and defender has a preferred strategy at N=2 (max),
both derived as strictly dominative strategies. The saddle-point
is at A=3/D=2 and the game value is v=0.0395, i.e. slightly biased
towards the attacker.

| Def(l) Def(2)
_______ e
Att(l) | -0.1667 0
Att(2) | 0.1574 -0.1103
Att(3) | 0.3194  0.0395

In any case, the game value GV(i,j) can be used to derive the proportional
support probabilities for each side, using pA=0.5+GV(i,j) for the
attacker and pD=0.5-GV(i,j) for the defender. The resulting values
can then be used to calculate the appropriate forces ratios for an
equilibrium, 1.e. a draw in battle. For GV(3,2), which is the
saddle-point in this situation, pA=0.5395 and pD=0.4605, so the forces
ratio for an equilibrium in battle is:

fA*pA = fD*pD => FA/fD = pD/pA = 0.8536
Based on this ratio, a full forces opposition matrix can be
calculated for battles of configuration A:D=3:2, which is the
preferred strategy for both players. Using a ceiling function for
the calculation of forces (integer), close-win situations for the
attacker are:

A:D = 3:2, 3:3, 4:4, ... 9:10, ..., 18:20, ..., 26:30,
The slightly lower forces required by the attacker to overcome the
defender is due to the fact that in the specific (saddle-point)
situation of 3:2 battles, the positive game value gives a slight
advantage to the attacker®s side. Any player exhibiting forces ratio
biased towards its side has the initiative of winning the battle.
Although each battle round is independent from each other, initial
forces ratio at the start of the battle should give a very good hint
about the most probable final outcome in the long run.

The "Hero" and "Fortress' options for battle bonuses apply for the

RISK rules presented in "The Lord of the Ring" game variance. It

adds some extra points (+1 or +2) in the attacker"s and/or

defender®s maximum dice numbers (only) when moving into battle with the
support of a hero character and/or a fortress.

AUTHOR: Harris Georgiou - xgeorgiou@yahoo.com
LICENCE: Mozilla Public Licence version 1.1
COPYRIGHT: Harris Georgiou (c) 2004

disp("RISK board game - evaluation of outcomes, version 1.2%);
disp(“Harris Georgiou (c) 2004, mailto:xgeorgiou@yahoo.com®);
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disp(® ");
msg=sprintf(“calculating...\n");
disp(msg);

clear all;

SD=6; % size of dices

heroA=0; % 0 or +1 (only "Hero" bonus for the attacker)
heroB=0; % 0 or +1
fortB=0; % 0 or +1

% ... Attack=1l, Defense=1 ...
G11=[]; resAl=0; resD1=0;
for Ai=1:SD,

for Di=1:SD,

if ( Ai+heroA <= Di+heroB+fortB ), % compare attack/defense draws (equal => defense
wins)
G11=[G11 -1]; resDl=resD1+1;
else
G11=[G11 +1]; resAl=resAl+1;
end;
end;
end;
gvll=(resAl-resDl)/size(G11,2); % use analytical formula for game value (generic)

t=[resAl/size(G11,2)*100 resD1/size(G11,2)*100]; % calculate partial percentages
msg=sprintf("GAME 1x1 PROB: Att(+1)=%6.3f%%(%d/%d) Def(-
1)=%6 . 3F%%(%d/%d) " ,t(1),resAl,size(G1l1,2),t(2),resD1,size(G11,2));

disp(msg);
% ... Attack=2, Defense=1 ...
G21=[]; resAl=0; resD1=0;
for Ai=1:SD,

for Aj=1:SD,

A=sort([Ai Aj]); % sort (ascending) the 2 attack draws
for Di=1:SD,
if ( A(2Q)+heroA <= Di+heroB+fortB ), % compare attack/defense draws (equal =>
defense wins), use first max value
G21=[G21 -1]; resDl=resD1+1;

else
G21=[G21 +1]; resAl=resAl+1;
end;
end;
end;
end;
gv2l1l=(resAl-resDl)/size(G21,2); % use analytical formula for game value (generic)

t=[resAl/size(G21,2)*100 resD1l/size(G21,2)*100]; % calculate partial percentages
msg=sprintf("GAME 2x1 PROB: Att(+1)=%6.3F%%(%d/%d) Def(-

1)=%6 . 3F%%(%d/%d) " ,t(1),resAl,size(G21,2),t(2),resD1,size(G21,2));

disp(msg);

% ... Attack=3, Defense=1 ...
G31=[]; resAl=0; resD1=0;
for Ai=1:SD,
for Aj=1:SD,
for Ak=1:SD,
A=sort([Ai AjJ AK]); % sort (ascending) the 3 attack draws
for Di=1:SD,
if ( A(3)+heroA <= Di+heroB+fortB ), % compare attack/defense draws (equal
=> defense wins), use First max values
G31=[G31 -1]; resDl=resD1+1;

else
G31=[G31 +1]; resAl=resAl+1;
end;
end;
end;
end;
end;
gv3l=(resAl-resDl)/size(G31,2); % use analytical formula for game value (generic)

t=[resAl/size(G31,2)*100 resD1/size(G31,2)*100]; % calculate partial percentages
msg=sprintf("GAME 3x1 PROB: Att(+1)=%6.3f%%(%d/%d) Def(-
1)=%6 . 3F%%(%d/%d) " ,t(1),resAl,size(G31,2),t(2),resD1,size(G31,2));
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disp(msg);

% ... Attack=1l, Defense=2 ... (=> not a valid combination)
%G12=[]; resAl=0; resD1=0;

%for Ai=1:SD,

% for Di=1:SD,

% for Dj=1:SD,

% D=sort([Di Dj]): % sort (ascending) the 2 defense draws

% if ( Ai+heroA <= D(2)+heroB+fortB ), % compare attack/defense draws (equal
=> defense wins), use Ffirst max values

% G12=[G12 -1]; resDl=resD1+1;

% else

% G12=[G12 +1]; resAl=resAl+1l;

% end;

% end;

% end;

%end;

%gv12=(resAl-resD1)/size(G12,2); % use analytical formula for game value (generic)

% Note: standard rules forbit A:D setup of 1:2, reset to zero to make neutral
G12=[0]; resAl=0; resD1=0; % set matrix cell to zero (not used)
gvl2=(resAl-resDl)/size(G12,2); % use analytical formula for game value (generic)

Y%t=[resAl/size(G12,2)*100 resD1l/size(G12,2)*100]; % calculate partial percentages
%msg=sprintf("GAME 1x2 PROB: Att(+1)=%6.3F%%(%d/%d) Def(-
1)=%6 . 3F%%(%d/%d) " ,t(1),resAl,size(G12,2),t(2),resDl,size(G12,2));

wdisp(msg);
% ... Attack=2, Defense=2 ...
G22=[]; resAl1=0; resD1=0; resA2=0; resD2=0;
for Ai=1:SD,
for Aj=1:SD,

A=sort([Ai Aj]); % sort (ascending) the 2 attack draws
for Di=1:SD,
for Dj=1:SD,
tA=0; tD=0;
D=sort([Di Dj]); % sort (ascending) the 2 defense draws
if ( A(2)+heroA <= D(2)+heroB+fortB ), % use FIRST max values, compare
attack/defense draws (equal => defense wins)
G22=[G22 -1]; tD=tD+1;
else
G22=[G22 +1]; tA=tA+1;
end;
if ( AQQ) <=DQ) ), % use SECOND max values, compare attack/defense draws
(equal => defense wins)
G22=[G22 -1]; tD=tD+1;
else
G22=[G22 +1]; TA=tA+1;
end;
if (tD>1), resD2=resD2+1; else resDl=resD1+1; end;
iIf (tA>1), resA2=resA2+1; else resAl=resAl+l; end;
end;
end;
end;
end;
gv22=(2*resA2+resAl-resD1-2*resD2)/size(G22,2); % use analytical formula for game value
(generic)

t=[resA2/size(G22,2)*100 resAl/size(G22,2)*100 resD1/size(G22,2)*100 resD2/size(G22,2)*100];

% calculate partial percentages

msg=sprintf("GAME 2x2 PROB: Att(+2)=%6.3F%%(%d/%d) Att(+1)=%6.3F%%(%d/%d) Def(-
1)=%6 . 3F%%(%d/%d) Def(-

2)=%6.3F%%(%d/%d) " ,t(1),resA2,size(G22,2),t(2),resAl,size(G22,2),t(3),resDl,size(G22,2),t(4),r
esD2,size(G22,2));

disp(msg);

% ... Attack=3, Defense=2 ...
G32=[]; resAl=0; resD1=0; resA2=0; resD2=0;
for Ai=1:SD,
for Aj=1:SD,
for Ak=1:SD,
A=sort([Ai Aj AK]); % sort (ascending) the 3 attack draws
for Di=1:SD,
for Dj=1:SD,
tA=0; tD=0;
D=sort([Di Dj1): % sort (ascending) the 2 defense draws
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if ( A(3)+heroA <= D(2)+heroB+fortB ), % compare attack/defense draws
(equal => defense wins), use first max values
G32=[G32 -1]; tD=tD+1;
else
G32=[G32 +1]; tA=tA+1;
end;
if ( A2 <= D) ), % compare attack/defense draws (equal => defense
wins), use second max values
G32=[G32 -1]; tD=tD+1;
else
G32=[G32 +1]; TA=tA+1;
end;
if (tD>1), resD2=resD2+1; else resDl=resD1+1; end;
if (tA>1), resA2=resA2+1; else resAl=resAl+l; end;
end;
end;
end;
end;
end;
gv32=(2*resA2+resAl-resD1-2*resD2)/size(G32,2); % use analytical formula for game value
(generic)

t=[resA2/size(G32,2)*100 resAl/size(G32,2)*100 resD1/size(G32,2)*100 resD2/size(G32,2)*100];

% calculate partial percentages

msg=sprintf("GAME 3x2 PROB: Att(+2)=%6.3Fu%(%d/%d) Att(+1)=%6.3Fu%(%d/%d) Def(-
1)=%6 . 3F%%(%d/%d) Def(-

2)=%6 . 3F%%(%d/%d) " ,t(1),resA2,size(G32,2),t(2),resAl,size(G32,2),t(3),resD1l,size(G32,2),t(4),r
esD2,si1ze(G32,2));

disp(msg);

% ... construct final results table and plot ...
GV=zeros(3,2);
GV=[gv1l gv12; gv21 gv22; gv3l gv32];

disp(™ ");
disp(“Game value table (rows=attack, cols=defense):");
GV

msg=sprintf(" (Att_Hero=%d , Def Hero=%d , Def Fort=%d)\n",heroA,heroB,fortB);
disp(msg);

Ffigure(l);

contourf(GV, [0 gv32]); % draw two contour lines, at levels "0" and at game value
title("RISK - battle outcome evaluation®);

xlabel ("Defense (ratio)");
ylabel ("Attack (ratio)®);
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